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Frequency locking of meandering spiral waves in cardiac tissue
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The influence of anisotropy on spiral waves meandering in a sheet of cardiac tissue is studied numerically.
The FitzHugh-Nagumo model represents the tissue excitability, and the bidomain model characterizes the
passive electrical properties. The anisotropy ratios in the intracellular and extracellular spaces are unequal. This
condition does not induce meandering or destabilize spiral waves; however, it imposes fourfold symmetry onto
the meander path and causes frequency locking of the rotation and meander frequencies when the meander path
has nearly fourfold symmetryS1063-651X98)50204-9

PACS numbd(s): 87.90+y

Spiral waves of electrical activity underlie many cardiacintracellular space®=1—[(gex/9ey)/(9ix/Qiy) 1, Whereg;,
arrhythmias[1]. Several authors have studied the dynamicss the intracellular conductivity in the direction,ge, is the
of spiral waves in excitable medj@—5]. For example, Win-  extracellular conductivity in thg direction, etc[9]. When
free studied the meandering of spiral waves using a twothese two spaces have the same anisotrogyy/@e,
dimensional reaction-diffusion model with FitzHugh- =g;,/g;,), e equals zero. In that case, Eq$) and (2) de-
Nagumo kinetics[3]. As he varied the parameters in his couple and Eq(1) reduces to that used by Winfr¢a]. In
model, the tip of his spiral wave traced a variety of pathsyentricular muscleg is approximately 0.7910], and the
from a circle to a regular isogofguasiperiodic meandering case ofe=0.9 exaggerates the influence of unequal anisot-
to a chaotic-appearing contour. Barkley also studied mearropy ratios. The parameter is equal tog;, /gey [9]; in my
dering, and showed that there is no frequency locking withinsimulations,a=1 [10]. Equation(2) governs the auxiliary
the quasiperiodic regimiet]. potential¥, which is a linear combination of the intracellular

The heart has unique electrical properties, resulting in beand extracellular potential®]. For e=0, Eq.(2) reduces to
havior that is not present in other excitable media. Theseaplace’s equation. Determiningl’ requires solving a
properties arise from the anisotropy of cardiac tissue, and iBoundary-value problem at every momeXt.Y, andT are
particular from the different degrees of anisotropy in the in-dimensionless space and time variabkss parallel to the
tracellular and extracellular spac@snequal anisotropy ra- myocardial fibers, and is perpendicular to them. The spa-
tios) [6]. Winfree’s and Barkley’s models did not take into tia| variables are scaled such that @0 the tissue is iso-
account unequal anisotropy ratios. In this Rapid Communitrgpic.
cation, | extend their calculations to include the effect of the The FitzHugh-Nagumo modédB] specifies the function
bidomain model, which accounts for unequal anisotropy raf(d,,,v) in Eq. (1), which governs the nonlinear membrane

tios [7]. My goal is to determine if the fourfold symmetry cyrrent. The variable controls the recovery of the action
inherent in the bidomain model results in frequency lockingpotential.

during spiral wave meandering.
The bidomain model is a two- or three-dimensional cable o3
model that is often used to represent the electrical properties f((I)m,U):(I)m——m—U, 3
of cardiac tissud6,8,9. It consists of two coupled partial
differential equation$9]:

Jv
b, 1 D, D, ae A 57— e(@utB—yv). (4)
—=—f(®,,v)+ + + ,
aT & ax?  gy? lta(l-e) gx?
(1) Equations(3) and(4) contain three parameters; indicating
the ratio of recovery rate to excitation ratg; relating to
92 1 92 excitability; andvy, equal to3 in all of my calculationg3]. |
2+ a—l—; — |2+ a(l—e)+m 7 consider values of from 0.1 to 0.3, and values ¢ greater
20 aY than (an excitable medium incapable of local spontaneous
1 PD, oscillations.
=e| 1+ ———| ——. (2
a(l-e)) gy TABLE |. Computational parameters.
Equation(1) is a reaction-diffusion equation for the trans- ¢ 0.3 and 0.2 0.1
membrane potentiab,,. The last term in Eq(1) is unique AX, AY 0.222 0.150
to the bidomain model; it represents the influence of unequal AT 0.0080 0.003 33
anisotropy ratios orb,,. | define the parametez as one Ny ,Ny 271 401

minus the ratio of conductivity ratios in the extracellular and
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FIG. 1. The transmembrane potenti},(X,Y) of a spiral wave;T=200,=0.2,3=0.8; (a) e=0, (b) e=0.75, and(c) e=0.9. Each
panel is 660 space units.

Equations(1), (2), and (4) are coupled. | solve Eq$l) with a period of about 200 time units. Fe=0.75 [Fig.
and(4) using an explicit finite-difference algorithm, and Eg. 4(b)], the petals of the flower favor particular directions in
(2) at each time using overrelaxatigftl]. The space and space. Fore=0.9 [Fig. 4(c)], the spiral and meander fre-
time steps AX, AY, AT) depend ore (Table ). The over- quencies are entrained. The meander path is a closed quatre-
relaxation terminates when the residual is less than®10 foil, except for a slow, linear drift.

The number of nodes in th¢ andY directions Ny, Ny) are An even more interesting meander path occurs for a three-
selected so that the tissue extends 60 space units in eaphktal flower. Figure &) shows the meander path fer=0,
direction (Table ). The edges of the tissue are insulatede=0.1, 8=1 (7,=18.4). The path is nearly a trefdiFig. 5,
(0®n/on=0¥/on=0). Initial conditions are selected so inse). Figure §b) shows the path foe=0.75. The three-
that a single spiral wave develops. Typical simulations laspetal flower does an intricate dance that imposes a fourfold
for 800 time units. | ignoreT=0-200, eliminating tran- symmetry onto the meander path. The tip meanders through
sients. ForT>200, the spiral wave tip follows a path that is a convoluted path foe=0.9 [Fig. 5(c)], roaming over a
independent of the initial conditions. large areg~300 space unif. The flower sometimes drifts

The X coordinate of a meandering spiral wave tip, almost linearly and at other times makes hairpin turns. The
Xiip(T), is approximately the sum of two periodic motions: entire pattern repeats itself approximately every 2000 time
the spiral rotation, with frequencfs, and the tip meander- units.
ing, with frequencyf, [5]. To calculatef; andf,, | compute Previous studies of spiral wave meander indicated fthat
the Fourier transform oXy,(T) and determine the frequency and f, do not entrain[4]. In other words, as a parameter
of the two primary peaks in the spectrum. Long computa<{such asg in the FitzHugh-Nagumo modebaries, f/f,
tions are needed to determine the frequency accurately, sochanges continuously and does not favor simple integer ra-
limited these calculations te=0.2,AX=AY=0.3333,Nx tios. However, Fig. &) suggests that the bidomain model
=Ny=181, andAT=0.016 66. | ran these simulations for at introduces frequency locking. Figure 6 shows/f, as a
least 1600, and up to 6000, time units. function of 8. The ratio changes smoothly fer=0, but for

Figure Xa) shows a fully developed spiral waveg, e=0.75 ande=0.9 it locks atf,;/f,=3 over a range of
=200,e=0,e=0.2, andB=0.8. | define the period of a spi- values forB. A ratio of 3:1 corresponds to a closed, four-
ral wave 7, as the time between consecutive excitations apetal flower. Other simple frequency ratios, such as 4:1, do
X=Y=0 (bottom left corney. If the spiral wave meanders, | not show frequency locking. | find evidence of frequency
average the last six periods. In Figal, 7,=12.8. Increas- locking for a ratio of 7:1(eight-petal flowey, although en-
ing e gives a squarish shape of the spif&igs. 1b) and trainment occurs over a much narrower ranggddhan for
1(c)], but has a negligible effect on,. Figure 2a) shows the 3:1 case. The bidomain model has little influence on the
W (X,Y) for e=0.75. Figure fb) showsd?¥/9X?2, which is  rotational frequencyf,; the meander frequencf, is re-
proportional to the last term in Eql). 3*¥/X? is largest ~ sponsible for frequency locking. When there is no frequency
where the wave front is propagating 45° to the fiber direclocking, the bidomain model may still influence the tip path.
tion, and it has a depolarizing influence at the leading edge
of the wave front. a)

My primary interest is in the path of the spiral wave tip. |
define the tip as the location wheed,, X Vo | is maximum
[12]. The tip follows a nearly circular path for some values
of B ande, but for other values it meand€l3]. Figure 3a)
shows a circular tip path for equal anisotropy raties;0.3,
B=0.8 (1g=48.4). For unequal anisotropy ratios, the tip fol-
lows a simple but not circular paflrigs. 3b) and 3c)]. The
period is almost independent o (e=0.75,7,=48.7; e
=0.9,79=49.6). Varyinge while fixing £ and B8 neither
induces nor suppresses meandering. FIG. 2. (a) The auxiliary potentiall’ (X,Y), and(b) 9*¥/9X? of

Figure 4a) shows that foe=0, £=0.2, 3=0.8, the spiral  a spiral waveT=200,e=0.2,3=0.8, ande=0.75. In(a), ¥ var-
wave tip meanders along a path resembling a four-petaks from 1.5(white) to —1.5 (black. In (b), 9?¥/9X? varies from
flower (Fig. 4, inset. The orientation of the flower precesses 0.5 (white) to —0.5 (black. Each panel is 6860 space units.
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FIG. 5. Path of the tip of the spiral wave=0.1, 3=1.0, and

(a) e=0, (b) e=0.75, and(c) e=0.9. The inset shows=0 for T
=200-245. The bar represents one space unit.

e=09

Insight into the origin of the fourfold symmetry can be

found in a perturbation analysis of the bidomain equations in

FIG. 3. Path of the tip of the spiral wavd;=200-800¢
=0.3,8=0.8, and(a) e=0, (b) e=0.75, and(c) e=0.9. The bar
represents one space unit.

In particular, additional frequency components may contrib-
ute to the tip motion.

My results fore=0 are consistent with Winfree’s report
[3]. The inclusion of unequal anisotropy ratios in these cal-
culations does not induce or suppress meandering, cause the
meandering to become chaotic, or break up the spiral wave
into fibrillation. However, the condition of unequal anisot-
ropy ratios influences the meander path of the tip of the
spiral wave and induces frequency locking, even for param-
eters corresponding to normal ventricular muscle (
=0.75).

Many phenomena associated with unequal anisotropy ra-
tios contain a fourfold symmetrj13]. The condition of un-
equal anisotropy ratios imposes a similar fourfold symmetry
on the meander patterns in Figs. 3—5. When the meander
path is a nearly fourfold-symmetric isogdfig. 4(a)], the
unequal anisotropy ratios entrain the meander path and cause
frequency locking[Fig. 4(c)]. When the symmetry of the
meander path is nearly threefdlBig. 5a)], unequal anisot-
ropy ratios cause the tip of the spiral wave to undergo a
rather complicated dance that imposes a fourfold symmetry
when viewed over long times.

FIG. 4. Path of the tip of the spiral wavd;=200-425¢
=0.2,8=0.8, and(a) e=0, (b) e=0.75, and(c) e=0.9. The inset
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the parametee [9]. A second-order contribution results in a
fourfold symmetric pattern of,, leading a closed, circular
wave front[9]. A similar effect is present in Fig.(B), where

FIG. 6. The ratio of rotational frequencf; to meander fre-

showse=0 for T=200-245. The bar represents one space unit. e=0.9. Frequency locking occurs &t/f,=3.

guencyf, as a function of3; £e=0.2,(a) e=0, (b) e=0.75, and(c)
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the additional source term is largest 45° from the fiber direc- Keener[14] studied propagation in cardiac tissue using a

tion, and is nearly zero parallel to and perpendicular to thenodel that, like mine, does not preserve rotational symmetry.

fibers. Although this bidomain effect is second ordeeiand  His model, however, postulates a discrete medium, with the

therefore small, it can have significant impact because propdlegree of “discreteness” different in each direction. My

gation at the spiral wave tip is compromised by wave-frontmodel, on.the other hand, is cont_inuous, anq the (otational

curvature and incomplete recovery. symmetry is broken by the properties of the bidomain model
Barkley[4] analyzed spiral wave dynamics using a bifur- With unequal anisotropy ratios.

cation analysis. He found that one of the primary eigenvalues This research was supported by the Whitaker Foundation
of a spiral wave is associated with rotational symmetry. Myand the College of Arts & Sciences, Vanderbilt University. |
results imply that the bidomain model breaks the rotationathank Barry Bowman for his careful editing of the manu-
symmetry, and should therefore modify the eigenvalue specscript. Discussions with Rubin Aliev and Art Winfree im-

trum. proved the manuscript.
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